If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(x^2+3-20)=0
We multiply parentheses
2x^2+6-40=0
We add all the numbers together, and all the variables
2x^2-34=0
a = 2; b = 0; c = -34;
Δ = b2-4ac
Δ = 02-4·2·(-34)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{17}}{2*2}=\frac{0-4\sqrt{17}}{4} =-\frac{4\sqrt{17}}{4} =-\sqrt{17} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{17}}{2*2}=\frac{0+4\sqrt{17}}{4} =\frac{4\sqrt{17}}{4} =\sqrt{17} $
| 31x+3+192=180 | | -5t+1=11 | | 52x=-4x^2+360 | | x(^2+3-20)=0 | | 30x+25=-20x+1000 | | 13+1/4a=(-3) | | 2x+24+104=180° | | F(x)=1/2(8x-20) | | 3/4(8x–4)=−3 | | ¾(8x–4)=−3 | | 5/8=1/x | | 6x-21-75=105 | | 2(x+8)=16-x | | 4/2=10/x=12/6 | | 32-3n=2n+18 | | (3z-1)2=(3z+4)•(3z-5) | | 4+d=16.5 | | 1,3y+3-2,6y=5,1-0,3y-1,1 | | 6(x^2-x-20)=0 | | Y=3k-6/5 | | 108=-12n-4(5n=7) | | 7(y-8=7y+42 | | (2x+20=165 | | 1,3y+3-2,6y=5,1–0,3y–1,1 | | 7y+5/8+2/3y=373/8 | | 8(2k-1)=13(2k+4) | | 6x+14+74=180 | | 36+6x=6(6x-5)+6 | | 1,3y+3–2,6y=5,1–0,3y–1,1 | | 9x+8=4x+7+ | | 1/4=r/20 | | 6(x^2-x+20)=0 |